Multi-class extractive voicemail summarization
نویسندگان
چکیده
This paper is about a system that extracts principal content words from speech-recognized transcripts of voicemail messages and classifies them into proper names, telephone numbers, dates/times and ‘other’. The short text summaries generated are suitable for mobile messaging applications. The system uses a set of classifiers to identify the summary words, with each word being identified by a vector of lexical and prosodic features. The features are selected using Parcel, an ROC-based algorithm. We visually compare the role of a large number of individual features and discuss effective ways to combine them. We finally evaluate their performance on manual and automatic transcriptions derived from two different speech recognition systems.
منابع مشابه
Evaluation of extractive voicemail summarization
This paper is about the evaluation of a system that generates short text summaries of voicemail messages, suitable for transmission as text messages. Our approach to summarization is based on a speech-recognized transcript of the voicemail message, from which a set of summary words is extracted. The system uses a classifier to identify the summary words, with each word being identified by a vec...
متن کاملExtractive summarization of voicemail using lexical and prosodic feature subset selection
This paper presents a novel data-driven approach to summarizing spoken audio transcripts utilizing lexical and prosodic features. The former are obtained from a speech recognizer and the latter are extracted automatically from speech waveforms. We employ a feature subset selection algorithm, based on ROC curves, which examines different combinations of features at different target operating con...
متن کاملText Summarization Using Cuckoo Search Optimization Algorithm
Today, with rapid growth of the World Wide Web and creation of Internet sites and online text resources, text summarization issue is highly attended by various researchers. Extractive-based text summarization is an important summarization method which is included of selecting the top representative sentences from the input document. When, we are facing into large data volume documents, the extr...
متن کاملUsing N-Grams To Understand the Nature of Summaries
Although single-document summarization is a well-studied task, the nature of multidocument summarization is only beginning to be studied in detail. While close attention has been paid to what technologies are necessary when moving from single to multi-document summarization, the properties of humanwritten multi-document summaries have not been quantified. In this paper, we empirically character...
متن کاملSIMBA: An Extractive Multi-document Summarization System for Portuguese
This is a proposal for demonstration of simba in PROPOR 2012. simba is an extractive multi-document summarization system that aims at producing generic summaries guided by a compression rate defined by the user. It uses a double-clustering approach to find the relevant information in a set of texts. In addition, simba uses a sentence simplification procedure as a mean to ensure summary compress...
متن کامل